Diversity and fluctuation of spine morphology in CA1 pyramidal neurons after transient global ischemia.

نویسندگان

  • Yi-Wen Ruan
  • Zhigang Lei
  • Yuan Fan
  • Bende Zou
  • Zao C Xu
چکیده

Dendritic spines form postsynaptic components of excitatory synapses in CA1 pyramidal neurons and play a key role in excitatory signal transmission. Transient global ischemia is thought to induce excitotoxicity that triggers delayed neuronal death in the CA1 region. However, the mechanism underlying structural changes of excitatory synapses after ischemia is not completely understood. Here, we demonstrate how dendritic spines change in their density and structure at an acute stage after transient global ischemia. Intracellular staining in vivo showed that the total spine density in basal, proximal, and distal apical dendrites increased at 12 hr and 24 hr after ischemia, but returned to control levels at 48 hr after ischemia. Consistent increase of spine density mainly appeared in non-late depolarizing postsynaptic potential neurons, although late depolarizing postsynaptic potential neurons also showed slight increases in spine density in these dendrites at the same intervals after ischemia. Golgi staining showed increased spine density occurred in less swollen dendrites but decreased spine density appeared in severely swollen dendrites at 12 and 24 hr after ischemia. In addition, the density and percentage of stubby spines reduced at 12 hr and 48 hr, whereas the density of thin spines increased at 12 hr after ischemia. The density and percentage of filopodia increased nearly fivefold at 24 hr after ischemia. Moreover, the density of mushroom spines doubled and its percentage increased by 150% at 48 hr after ischemia. These morphological changes of spines may be related to neuronal injury in CA1 pyramidal neurons after ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cere...

متن کامل

Effect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats

Objective(s):Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment ...

متن کامل

Neurotrophic effect of hydroalcoholic extract of Malva neglecta leaf on pyramidal neurons of CA1 hippocampus of male Wistar rat following ischemia /reperfusion

Abstract Background: Stroke is the second leading cause of death in the world and has irreversible consequences. Cerebral ischemia/reperfusion (I/R) through production of oxidants and inflammatory markers causes apoptosis of brain neurons. On the other hand, in various studies, the antioxidant and anti-inflammatory effects of the Malva neglecta have been proven. Therefore, in this study, we inv...

متن کامل

Antiapoptotic Effects of Aspirin on CA1 Pyramidal Neurons in Adult Rats

  Background and Objective: As one of the widely used drugs, aspirin (acetyl-salicylic acid, ASA) plays an important role in stroke treatment and prevention. In a previous study, we demonstrated ASA injection at 30 min after ischemia onset is neuroprotective. To determine whether the neurons protected by ASA had a normal ultrastructure, hippocampal CA1 pyramidal neurons were examined by Transm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 87 1  شماره 

صفحات  -

تاریخ انتشار 2009